
Real-Time Object-Space Edge Detection using OpenCL
Dwight House

Master of Science in Computer Science
dwighthouse@gmail.com

Dr. Xin Li
Dean of Faculty, Director of Education

DigiPen Institute of Technology
xli@digipen.edu

Abstract
At its most basic, object-space edge detection iterates through all polygonal
edges in each mesh to find those edges that satisfy one or more edge tests.
Those that do are expanded and rendered, while the remainder are ignored.
These 3D edges, and their resulting accuracy and customizability, set object-
space methods apart from all other categories of edge detection. The speed and
memory limitations of iterating through all polygonal edges in each mesh each
frame has inspired optimization research.

In this paper, we explore methods to calculate object-space edges utilizing
programmable GPU technologies, including OpenCL. The OpenCL methods
explored allow for a significant reduction in calculation quantity. Some also
provide a reduction in rendering artifacts and memory usage over previous
GPU techniques. Unfortunately, most uses of OpenCL for edge detection results
in slower performance than shader-based techniques, though variations and
optimizations may reduce this disadvantage in the future.

Background
Edge detection and rendering is an important non-photorealistic rendering
technique. Rendered edges can be used for a multitude of purposes including
object differentiation, structural enhancement, highlighting, and blur-based anti-
aliasing. They also are a required component of several graphical styles such as
toon rendering and sketchy rendering.

Edge Types
There are several types of edges. Each type requires different detection tests,
and may not be detectable with a given method.

• Contour: A polygon edge that connects two polygons, one front-facing and
the other back-facing.

• Crease: A polygon edge that connects two polygons that are within some
user-defined angular distance of each other.

• Boundary: A polygon edge that forms the side for only one polygon.
• Intersection: A collision of two polygons such that the line formed along the

intersection is a polygon edge of only one or neither of the colliding
polygons.

• Marked: A polygon edge flagged to always be rendered as an edge.
For the purposes of this paper, we ignore further discussion of intersection
edges. Intersection edges are not detectable with object-space methods.

Edge Detection Method Categories
Object-space edge detection refers to one category of edge detection. The other
categories are Hardware, Image-space, and Miscellaneous.

• Hardware: In these methods, edges are not detected, but directly rendered
as a byproduct of some other operation, or series of operations. These
methods are very fast, available on almost all hardware, and do not require
mesh preprocessing or additional memory. However, they typically only
render contours and they lack customizability.

• Image-space: In this method, two rendering passes are used. In the first,
scene data, like depth and normal information, is rendered and stored to the
GPU temporarily. In the second pass, the stored data is used with image-
processing techniques to determine areas of rapid change, which generally
correspond to edges. This method has constant-speed edge detection,
because the speed of the second pass is dependent on the number of pixels in
the viewport, not the number of objects rendered. It can also detect edges
easily that other methods cannot. However, the edge accuracy is lacking and
the edge thickness is inconsistent. The image-space, like the hardware
methods, does not produce edges that are readily customizable.

• Object-space: In these methods, some or all of the polygon edges of each
mesh are tested for their drawability. Those edges that pass the test are then
expanded into quads or other structures, where they are rendered like any
other geometry. Those polygon edges not drawable are discarded. Since the
edge detecting occurs in 3D space, the results are more accurate. The output
is 3D geometry, so the edges can be customized to a great degree, including
texturing, animating, and shading. However, the number of tests and

rendering operations for each edge causes object-space edge detection to be
the slowest form of edge detection.

• Miscellaneous: These methods share no direct similarities with each other,
though in terms of their positive and negative qualities, they resemble
hardware methods.

In this paper, we only focus on object-space edge detection, as it is the method
used by this paper’s OpenCL-based edge detection.

OpenCL
OpenCL, which stands for Open Computing Language, creates a standardized
interface for computational tasks on a variety of devices. It is specifically
focused on data-parallel tasks, which require a single set of relatively simple
operations be performed on massive quantities of nearly atomic data. This is
essentially the form of calculation found in GPU rasterization. Not surprisingly,
GPUs are often the preferred device for utilizing OpenCL. Like vertex shaders,
an OpenCL program (called a kernel) can access data stored on the GPU and
perform operations on it before creating output. However, OpenCL is more free
in what it can do and what it can access. Though more versatile, without careful
planning an OpenCL operation can take far longer than the equivalent operation
implemented as a shader.

Previous Work
Edge detection algorithms are very old and well documented. However, the
paper by Markosian et al. [Markosian et al. 97] represents some of the first
work in real-time edge detection. They stored edge adjacency information for
each polygon edge. Contour edges tend to form loops around a mesh, so when a
contour edge was found, they recursively performed the contour edge test on
the connecting edges first. This method tends to detect the longest, and
therefore most significant, edges with a minimal number of random tests.
Additionally, a small portion of contour edges detected each frame were also
stored for the next frame as starting points for the next round of edge tests.
Without sudden movements, a significant number of contour edges remain the
same from frame to frame. By checking only a very small percentage of all
edges, they found a fivefold increase in the rendering speed over testing all
polygon edges individually. Of course, some contour edges could be missed
entirely from frame to frame, possibly resulting in flickering.

Gooch et al. [Gooch et al. 99] described a method where they stored edgesʼ
normal arc on a sphere surrounding the object. Groups of similar arcs, in gauss
map format, were stored hierarchically so that groups of edges could quickly be
deemed all back-facing or all front-facing. A plane was placed at the origin of
the sphere and then aligned perpendicular with the view vector. Edges whose
arc intersect the plane are contour edges. This technique allowed contour edge
detection to be sped up by 1.3 times for their S. Crank mesh and 5.1 times for a
sphere. Unfortunately, this technique only works well under orthographic
projection.

In a similar idea, Sander et al. [Sander et al. 00] created a hierarchical search
tree of polygons. At each node, they created anchored cones that represented
the maximum range of the normals possessed by vertices in the node. This
information can be used to quickly determine that no contour edges are possible
for whole sets of nodes without testing individual edges.

Jeff Lander [Lander 01] documented the optimization of ignoring edges that
have co-planar adjacent polygons. Flat planes only generate drawable contour
edges on their outside edges, not their internal edges, and they lack the angular
difference between adjacent polygons to generate crease edges. During the
preprocessing step, an additional test checks for co-planar adjacent polygons. If
found, the edge is not added to the list of edges to test. If a mesh was
constructed using primarily quads, this optimization can reduce the number of
edge tests significantly: over 20% in the case of the Utah Teapot.

Other imaginative edge storage and detection methods exist. Aaron Hertzmann
and Dennis Zorin [Hertzmann and Zorin 00] described a method of using 4D
dual surfaces to determine the contour edges with curve-plane intersections.
Tom Hall [Hall 03] created a modification of Markosian et al.ʼs technique by
focusing almost exclusively on tracking contour changes from frame to frame.
By looking at adjacent edges to previously found edges and noticing the

1

relative camera change, he was able to significantly reduce the number of edges
tested. This method worked especially well with highly tessellated meshes.

Finally, Morgan McGuire and John F. Hughes [McGuire and Hughes 04]
detailed a method to shift the entirety of the edge detection and rendering to the
graphics card via programmable shaders. Copies of adjacency, vertex, and
normal information were stored in vertex buffer arrays and accessed within the
vertex shader. If the edge was found drawable, the degenerate duplicate vertices
were turned into screen-aligned quads. Otherwise, they were shifted behind the
camera, where they would be clipped during the rendering process. McGuire
and Hughes also took a critical look at how the thick edge gaps could be filled
effectively. Their paper formed the basis for OpenCL edge detection research.

Hardware Determined Feature Edges
We focused heavily on improving the object-space method described by
Morgan McGuire and John F. Hughes [McGuire and Hughes 04]. To provide
context and ease understanding, we detail here McGuire and Hughes ̓work as it
relates to our contributions.

McGuire and Hughes ̓ goal was to transfer all detection and rendering of edges
to the GPU, gaining the speed of parallel calculation and removing the
bottleneck of geometry data transfer from the CPU to the GPU. Parallel
computation and the technology of the time forced them to test every polygon
edge independently, unlike some of the object-space optimizations. As a result,
a large amount of GPU memory is required.

The method used four render passes:
• Mesh pass: Render mesh normally at a slight backward offset
• Edge pass: Render drawable edges as expanded quads or lines
• Cap pass (first side): Render the first side cap of each drawable edge
• Cap pass (second side): Render the second side cap of each drawable edge

Data Structure
McGuire and Hughes created an edge mesh data structure that contained four
edge vertices for each unique polygon edge. Each edge vertex contained values
required for edge detection and generation. Those that can be represented
geometrically are shown in Figure 1.

Figure 1: The important geometric values for each edge in McGuire and
Hughesʼ method: v0, v1, v2, and v3 are vertices on two polygons that share an
edge. n0 and n1 are the vertex normals for v0 and v1, respectively. v3 may not
exist in the case of a boundary edge.
The values in each edge vertex are:
• v0: first vertex in the edge
• v1: second vertex in the edge
• v2: final vertex that, with v0 and v1, makes the first polygon
• v3: final vertex that, with v0 and v1, makes the second polygon
• n0: v0ʼs normal vector
• n1: v1ʼs normal vector
• r: random scalar used in texture parameterization
• i: scalar from 0 to 3 that differentiates duplicates in the edge mesh
The r parameter is ignored for this paper. The i parameter is used to pick what
value to output after an edge is detected drawable. If the edge is a boundary
edge, there is no v3 vertex. In that case, v3 is set equal to v0.

For each polygon edge, all of the above values are obtained from the mesh,
except for i. The newly formed edge vertex is duplicated three times. Each of
the now four edge vertices with the same data are given a different, ordered i
value from 0 to 3. All four of these edge vertices for each polygon edge is
stored with all other edge vertices in an edge mesh. Finally, the edge mesh is
copied into vertex buffers on the GPU for later use. This preprocessing step is

Figure 8-1: The important geometric values for each edge in McGuire and Hughesʼ method: v0,
v1, v2, and v3 are vertices on two polygons that share an edge. n0 and n1 are the vertex normals
for v0 and v1, respectively.

The values in each edge vertex are:

• v0 - first vertex in the edge

• v1 - second vertex in the edge

• v2 - final vertex that, with v0 and v1, makes the first polygon

• v3 - final vertex that, with v0 and v1, makes the second polygon

• n0 - v0ʼs normal vector

• n1 - v1ʼs normal vector

• r - random scalar used in texture parameterization

• i - scalar from 0 to 3 that differentiates duplicates in the edge mesh

v0, v1, v2, v3, n0, and n1 are all 3D vectors. r is used only for object-space
texture parameterization. i is used to pick different output vertices in the vertex
shader so that the edge will become non-degenerate. If the edge is a boundary
edge, there is no v3 vertex. In that case, v3 should be set equal to v0.

For each polygon edge, all of the above values are obtained from the mesh,
except for i. The newly formed edge vertex is duplicated three times. Each of the
now four edge vertices with the same data are given a different, ordered i value
from 0 to 3. All four of these edge vertices for each polygon edge is stored with
all other edge vertices in an edge mesh. Finally, the edge mesh is copied into

v0

v1

v3

v2

n1

n0

39

quite expensive, but once complete, all edge detection and rendering can be
accomplished by the GPU with no special data transfer whatsoever.

The user needs some way of referencing the edge mesh buffers on the GPU.
Generating an index array buffer containing sequential numbers from 0 to (4E -
1), where E is the number of unique polygon edges, allows the data to be
referenced and rendered with a single render call. Furthermore, other index
array buffers can be created to reference only the first three, or first two, i
values of each set of four edge vertices. Such index array buffers are useful for
rendering caps and thin edges.

Edge Detection
Contour edges can be detected by finding the dot product of both adjacent
polygons’ face normals with the view vector. If the sign of the two values is
different, the polygon edge is a contour. Crease edges can be detected using the
face normals of the adjacent polygons as well. Since the face normals’ angular
distance is inversely proportional to the angular “sharpness” of the two adjacent
polygons, polygon edges are found to be creases if the dot product of the two
face normals is less than the negative cosine of the user-defined angle. This will
detect crease edges that are any sharper (smaller angular distance between
adjacent polygons) than the user-defined angle. Finally, boundary and marked
edges are detected by checking v0 and v3 for equality. The detection tests are
described algorithmically below.

• Contour: [(DotProduct(Na, V) * DotProduct(Nb, V)) < 0]
• Crease: [DotProduct(Na, Nb) < -cos(θ)]
• Boundary and Marked: [v0 == v3]
Where Na and Nb are the face normals of the two adjacent polygons, V is the
view vector, and θ is the user-defined angle.
Once an edge is detected, one of several rendering methods can be used to
create a viewable edge feature.

Edge Rendering
The user has several choices for what type of edge to generate, including a
rasterized line, full quad, or half-quad. For each type of output, the i value is
used to determine which of several output vertices should be generated.

Rasterized Line Edge
For rasterized lines, only two duplicates per edge vertex are needed in the edge
mesh. If available, itʼs most efficient to use an index buffer that contains only
the indices of the first two edge vertices per set in the edge mesh. When the i
value is 0, the vertex shader should output MVP * v0. Otherwise, it should
output MVP * v1. MVP is the ModelViewProjection matrix.

McGuire and Hughes create edges, and later caps, in screen-space to ensure a
consistent thickness. The screen-space versions of some edge components are
needed to accomplish the creation process. Those values are:
• s0: v0 in screen-space
• s1: v1 in screen-space
• m0: n0 in screen-space
• m1: n1 in screen-space
• p: normalized perpendicular vector to the screen-space edge vector (s1 - s0)
These values are calculated via:

s0 vec4 s0 = MVP * vec4(v0.xyz, 1.0);
s0.xy = (s0.xy / s0.w) * vec2(Width, Height);

s1 vec4 s1 = MVP * vec4(v1.xyz, 1.0);
s1.xy = (s1.xy / s1.w) * vec2(Width, Height);

m0 vec4 temp = MVP * vec4(v0.xyz + n0.xyz, 1.0);
temp.xy = (temp.xy / temp.w) * vec2(Width, Height);
vec2 m0 = normalize(temp.xy - s0.xy);

m1 vec4 temp = MVP * vec4(v1.xyz + n1.xyz, 1.0);
temp.xy = (temp.xy / temp.w) * vec2(Width, Height);
vec2 m1 = normalize(temp.xy - s1.xy);

p vec2 p = normalize(vec2(s0.y - s1.y, s1.x - s0.x));

Where Width and Height are the width and height of the viewport, respectively.
The above functions use component-based division and swizzle vector
operations. The p vector’s length can be modified to adjust the screen-space
thickness of rendered edges.

Full Quad Edges
Full quad edges render on both sides of the screen-space edge, as seen in figure
2. On contour edges, the “inner” half would penetrate the mesh itself, which
can sometimes lead to artifacts. However, for most marked and boundary edges,

2

and all crease edges that are not also contours, these are the preferred output
type. Using the i value, one of four calculations listed below are performed on
the input edge vertex to create the output vertex. Note that the output vertices
are converted from screen-space back to projection-space, which is the
expected output format for vertex shaders.

i = 0 vec4((s0.xy - p.xy) / vec2(Width, Height) * s0.w,
s0.zw)

i = 1 vec4((s1.xy - p.xy) / vec2(Width, Height) * s1.w,
s1.zw)

i = 2 vec4((s1.xy + p.xy) / vec2(Width, Height) * s1.w,
s1.zw)

i = 3 vec4((s0.xy + p.xy) / vec2(Width, Height) * s0.w,
s0.zw)

Figure 2: Depending on the i value, the output point is calculated using the two
screen-space edge points and the perpendicular vector.

Half-Quad Edges
Half-quad edges are only suitable for contour edge rendering. To ensure that the
half-quad is rendered on the “outside” of the mesh, the p value is modified so it
always points in the same direction as the m0 vector via the sign function. As
with the full quad method, the i value is used to determine which of four output
values to create. Figure 3 provides an illustration of the output.

i = 0 vec4(s0.xy / vec2(Width, Height) * s0.w, s0.zw)

i = 1 vec4(s1.xy / vec2(Width, Height) * s1.w, s1.zw)

i = 2 vec4((s1.xy + p.xy * sign(dot(m0, p))) / vec2(Width,
Height) * s1.w, s1.zw)

i = 3 vec4((s0.xy + p.xy * sign(dot(m0, p))) / vec2(Width,
Height) * s0.w, s0.zw)

Figure 3: The p vector is modified to point outward, so the edge half-quad will
only render on the outside of the mesh.

Non-Drawable Edges
If an edge fails all the edge tests, it is a non-drawable edge. Optimally, these
edge vertices would be removed from the pipeline at this point, since they do
not create valid output. However, vertex shaders cannot delete vertices.
McGuire and Hughes solved this issue by outputting a single vertex for all i
values: (0, 0, -1, 1). These vertices will not only be degenerate, but in
projection-space they are behind the camera and will be clipped before reaching
the fragment shader.

Edge Caps
Edges rendered with a thickness of greater than a few pixels will cause visible
gaps to occur at many of the edge connection points, as in the left side of figure
4. McGuire and Hughes accounted for these by rendering half-caps on both
ends of each drawable edge, connecting at a point along the screen-space
normal of the side in question to create a cap that fills the gap completely
(figure 4 on right). The half-caps can be generated from the same edge mesh
data as the edge, but they need a different index array buffer. The cap index
array buffer needs index values that reference only the first three duplicates of
each set of edge vertices.

As mentioned earlier, the two caps are generated in separate render passes: the
first deals with the v0 side and the second deals with the v1 side. They are
rendered as triangles, rather than quads. The output vertices are described
below.

Half-Cap Output On v0 Side
i = 0 vec4(s0.xy / vec2(Width, Height) * s0.w, s0.zw)

i = 1 vec4((s0 + p * sign(dot(m0, p))) / vec2(Width, Height)
* s0.w, s0.zw)

i = 2 vec4((s0.xy + m0) / vec2(Width, Height) * s0.w, s0.zw)

Half-Cap Output On v1 Side
i = 0 vec4(s1.xy / vec2(Width, Height) * s1.w, s1.zw)

i = 1 vec4((s1 + p * sign(dot(m1, p))) / vec2(Width, Height)
* s1.w, s1.zw)

i = 2 vec4((s1.xy + m1) / vec2(Width, Height) * s1.w, s1.zw)

The p, m0, and m1 vectors should all be scaled by the same value used when
scaling the edge if the user desires a specific screen-space thickness.

Figure 4: On the left, two thick screen-space edge quads connect to create a
visible gap. Using the screen-space projection of the vertex normal they share,
the gap can be filled with a cap formed from one half-cap from each edge (one
blue, one red), as seen on the right.

Issues
McGuire and Hughes’ edge and capping method are highly effective and very
fast on modern hardware, but they have a few drawbacks.

• Calculation Duplication: Each polygon edge is tested for drawability ten
times: four for the edge and three for each half-cap. Once an edge is
determined drawable, all the calculations necessary to create the output
vertices is also duplicated. Geometry shaders usage was proposed as a
solution, since it can output more than one vertex per invocation.

• High GPU Memory Usage: The edge mesh also requires at least seventy-
two extra floats and four integer values for every polygon edge. All of this
information is already on the GPU in the form of vertices, vertex normals,
and indices. McGuire and Hughes suggested using data textures to reduce
the memory usage by a factor of four.

• Incorrect Caps: When the screen-space projection of the vertex normals
does not correspond well to the curvature of the edge, caps can be generated
on the wrong side of the edge under certain perspectives. McGuire and
Hughes suggested rendering caps on both sides of the edge when the error is
likely to occur.

• Screen-Space Thickened Edges: While it is trivial to scale the thickness of
the drawn edges and caps, the use of screen-space scaling makes all edges
have the same thickness no matter their distance from the camera. This can
cause artifacts and confusion about the distance of the object. Though
screen-space thickness may be desired, having a depth-based scaling factor
is beneficial for other graphical requirements.

Using OpenCL can help with the first three issues. The last issue is dealt with in
the appendix.

Object-Space Edge Detection Using OpenCL
After researching and implementing McGuire and Hughesʼ method, we
attempted to improve upon it. The most extensive research focused on finding a
replacement technique that would take advantage of the new capabilities of
OpenCL.

Relevant OpenCL Capabilities
OpenCL has several abilities that make it more flexible than shaders. Those that
are relevant to the detection of edges are listed below.

• OpenGL Buffer Interoperability: An instance of OpenCL, if built using an
OpenGL context, will have direct access to buffers from OpenGL for both

3

reading and writing. However, locking the buffers is necessary in some
cases.

• Read Freedom: With access to all buffers on the GPU, OpenCL can access
multiple buffers from within the same kernel. OpenCL can also request data
from buffers out of order, unlike shaders.

• Write Freedom: As long as there is enough space, a single OpenCL kernel
can output any number of values to any number of buffers.

With these abilities, an OpenCL-based edge detection algorithm can make use
of data already on the GPU, removing the need for data duplication. The
calculations also need not be repeated, since multiple values can be output from
a single kernel.

Edge Data Structures
Because almost all the data needed for the edge detection step already exists on
the GPU for normal mesh rendering, OpenCL’s edge mesh structure need only
contain the vertex indices for each edge’s adjacency information.

• i0: index of first vertex in the edge
• i1: index of second vertex in the edge
• i2: index of final vertex that, with i0 and i1, indexes the first polygon
• i3: index of final vertex that, with i0 and i1, indexes the second polygon
These values can be used to index directly into the vertex and normal buffers.
We only need one copy of them because OpenCL can output multiple values
from the same kernel. This can represent a significant reduction in the memory
requirements of the edge detection.

Because OpenCL cannot export vertices to the rendering pipeline directly, the
output values, both edge quads and degenerate quads must be temporarily
stored to the GPU’s memory for rendering in another pass. This edge out buffer
must be created to hold 4E four dimensional vertices (or 16E floats) values,
where E is the number of edges in the mesh.

Edge Detection and Rendering
The edge detection tests are exactly the same as those in McGuire and Hughes’
method with one exception. Since index values are available, the boundary and
marked edge tests can be accomplished by checking for index equality of i0 and
i3, rather than checking the indexed vertices.

As before, if the edge is not drawable, a degenerate quad should be exported to
the edge out buffer made up of the vertex (0, 0, -1, 1). For drawable edges, they
should be expanded as in McGuire and Hughes’ method before being exported.
In both cases, all the vertices in the projection-space quads are exported in a
single step to their appropriate location in the edge out buffer, using the same
identifying index used to get the input edge information.

The edge detection kernel will need access to the ModelViewProjection matrix
and the viewport dimensions to calculate the screen-space position of the
vertices. Since OpenCL is not part of the shading environment, these values
must be manually sent to the kernel each frame. The edge out buffer, after the
edge detection step is complete, will contain sets of four projection-space
vertices representing the edge quads or degenerate quads. Therefore, when
rendering the edge out buffer as quads, the vertex shader should apply no
transforms on the vertices at all.

McGuire and Hughes-based Capping
Beyond edges, the McGuire and Hughes’ capping method can also be
implemented in OpenCL. In fact, it requires no additional data to integrate it
into the edge detection system described above. It only requires two additional
output buffers capable of storing at least 3E four dimensional vertices (12E
floats) each, where E is the number of edges in the mesh. Again, this is due to
OpenCL’s inability to export data directly to the graphics pipeline.

If the edge was detected drawable, the two edge half-caps can be immediately
generated. The normal information needed can be accessed using the index
values i0 and i1 on the normal buffer. From then on, the vertex creation process
is identical. As with the edges, the rendering passes for the cap buffers can
simply pass their vertex data through the vertex shader.

Edge Adjacency Capping
OpenCL’s abilities to access and manipulate many buffers provides for another
method of edge capping. In McGuire and Hughes’ caps, if the projected normal
did not correspond well to the curvature of the mesh, caps could be generated
on the wrong side of the edge. With access all edges, we can make a list of
connected edges. Using this, the capping process is no longer a blind activity
that generates two half-caps per drawable edge. Instead, caps are created

relative to the vertex to which they connect. With both edges connecting at that
vertex available, we can determine exactly which caps should be created, and
exactly what size to make them so they always fill the gap perfectly. This
eliminates the need for vertex normals and prevents the problems with caps
being generated incorrectly. A number of edge orientations and the caps they
form are displayed in figure 5.

Figure 5: No matter the orientation of the two edges or the normal, a perfect
cap is formed to fill the gap every time.
A cap buffer must be preprocessed. It stores indices like the edge buffer.
However, the indices reference index sets in the edge buffer. This makes a
single potential cap from every pair of connected edges. Each vertex in this
“cap mesh” contains:

• e0: index of first edge
• e1: index of second edge
As with the edge buffer, the cap buffer needs a corresponding cap out buffer to
store the output caps for later rendering. It must be big enough to hold 4C four
dimensional vertices (16C floats), where C is the number of cap vertices in the
cap buffer.

Cap Detection
In this method of capping, only those caps for whom both connected edges are
drawable should be drawn. Thankfully, because the edge detection step must
store its output data temporarily, it is trivial to determine if both are drawable.
After obtaining the projection-space edge quads from both connected edges,
drawability can be determined by checking one of the vertices in each for
equality with the degenerate vertex (0, 0, -1, 1). To reduce the test to a single
comparison, during the edge test, degenerate quads can be exported that use the
vertex (NaN, 0, -1, 1). Then drawability can be determined by checking the x
component of the first vertex of each quad for being NaN (Not a Number). The
values remain degenerate in this variation, so they will not generate artifacts
when rendering the edges.

Cap Creation and Rendering
If both edges are drawable, the cap should be created. The projection-space
edge quads are used to determine where to place the cap. However, there is no
guarantee of the edges’ orientations. We must ensure they are aligned with each
other, which for this paper means that the i1 side of edge one is connected to
the i0 side of edge two. This is easily done by using the cap buffer’s indices to
look up the edge indices for each edge and determining if one or both edges’
output values should be flipped before use.

Once aligned, the projection-space edge points can be transformed to screen-
space using homogeneous division and multiplication by the viewport width
and height. At this point, the values can differ significantly depending on the
usage of half-quads. If half-quads were used in addition to full quads, a large
amount of logic or additional data is needed to successfully determine the exact
connection point for the aligned edges. For the sake of time, we assume that
only full quads were used.

For the first edge quad, the point halfway between the first and last screen-
space edge points represents the left edge point, called sL. The halfway point
between the second and third screen-space edge points for the first edge quad is
the point of connection for the two edges, called sM. Finally, the halfway point
between the second and third screen-space edge points of the second edge quad
represent the right edge point, called sR.

The “middle vector” can be determined from sL, sM, and sR. It takes the place
of the screen-space normal in the cap creation process. It is the vector bisecting
the two edge vectors, inverted. It is calculated via the formula below.

4

vec2 middleVector = -normalize(normalize(sL.xy - sM.xy) +
normalize(sR.xy - sM.xy));

Once the middle vector is obtained, the only remaining required values are the
two perpendicular vectors, one for each edge. After calculation, they have to be
aligned to point in the same direction as the middle vector. They are calculated
as below.

vec2 p0 = normalize((vec2)(sL.y - sM.y, sM.x - sL.x));
p0 = p0 * sign(dot(p0, middleVector));

vec2 p1 = normalize((vec2)(sR.y - sM.y, sM.x - sR.x));
p1 = p1 * sign(dot(p1, middleVector));

With all these values available, the four cap vertices can be created, as listed in
the table below. These are all exported to the cap out buffer in one pass. As with
the edges, those caps that should not be drawn should output a degenerate quad
using the vertex (0, 0, -1, 1).

0 vec4((sM.xy + middleVector) / sM.w * vec2(Width,
Height), sM.zw)

1 vec4((sM.xy + p0) / sM.w * vec2(Width, Height), sM.zw)

2 vec4(sM.xy / sM.w * vec2(Width, Height), sM.zw)

3 vec4((sM.xy + p1) / sM.w * vec2(Width, Height), sM.zw)

Comparative Analysis
We compare the memory usage, speed, and rendered output of McGuire and
Hughes’ method in shaders, McGuire and Hughes’ method in OpenCL, and our
new OpenCL method.

Memory Usage
Calculating the total memory footprint of both edges and caps is dependent on
the number of possible edges and caps, the view direction, and the type of mesh
in question. We compare the number of bits required to store the data necessary
both to calculate the edges and caps, and in the case of OpenCL, the bits
required to temporarily store the output for later rendering. The shader
implementation must have some memory to store the output of its calculations,
but it is hidden by the implementation and not directly measurable. 32-bit float
and integer types were assumed. Values are in bits.

McGuire & Hughes
(shader)

McGuire & Hughes
(shader)

McGuire & Hughes
(OpenCL)

McGuire & Hughes
(OpenCL) New OpenCLNew OpenCL

Edge Cap Edge Cap Edge Cap

2688 96 640 512 640 576

At this point, the edge to cap ratios differ. The number of caps necessary to test
is significantly higher for the new OpenCL capping method, whereas in both
methods that implement McGuire and Hughes’ capping, the cap to edge ratio is
always 2. To get a good sample, a variety of meshes were tested, rendered from
a camera position of (5, 5, 5) with the unit-sized mesh at the origin. From this,
the below table illustrates the total number of bits used for each type of object
in all three methods.

McGuire & Hughes
(shader)

McGuire & Hughes
(OpenCL) New OpenCL

Cube 69120 39936 29184

Cylinder 276480 159744 245760

Cone 184320 106496 381952

Quad Sphere 5806080 3354624 5289984

Ico Sphere 5529600 3194880 6741120

Teapot 3398400 1963520 3301120

Monkey 4173120 2411136 5067648

Bunny 59938560 34631168 75118720

By converting these bit requirements relative to the amount used by our base
case (McGuire and Hughes’ algorithm in shader), we get a list of memory usage
ratios.

M&H (OpenCL) to
M&H (Shader)

New OpenCL to
M&H (Shader)

Cube 0.577 0.422

Cylinder 0.577 0.888

Cone 0.577 2.07

Quad Sphere 0.577 0.911

Ico Sphere 0.577 1.21

Teapot 0.577 0.971

Monkey 0.577 1.21

Bunny 0.577 1.25

Implementing McGuire and Hughes’ algorithm on the GPU, even with the extra
temporary storage requirements, yields a significant memory savings. The new
OpenCL capping method, on the other hand, varies significantly based on the
number of connections per point in the mesh. Overall, the memory usage is
about the same.

Speed
To measure the speed of the three methods, we compare the framerates from the
same view direction for the same set of example objects.

McGuire & Hughes
(shader)

McGuire & Hughes
(OpenCL) New OpenCL

Cube 1173 762 760

Cylinder 1103 735 733

Cone 1244 670 724

Quad Sphere 713 584 416

Ico Sphere 739 593 360

Teapot 850 631 464

Monkey 770 634 334

Bunny 134 159 31

Clearly, the shader implementation is the fastest for most meshes. Only for very
complicated meshes is the McGuire and Hughes’ method implemented in
OpenCL faster than the shader. All tests of the new OpenCL capping method
resulted in significantly slower speeds than the shader-based edge detection.

The reasons for the speed differences are numerous. OpenCL cannot short-
circuit code, so the worst-case calculation path is effectively always used. The
new OpenCL capping method relied upon short-circuiting for its theoretically
faster speeds. McGuire and Hughes’ algorithm did not rely on short-circuiting,
and so had effectively fewer instructions than the new OpenCL method.
Additionally, memory access in the shader is always cached, because it is
accessed in order. Both OpenCL methods access the memory out of order to
save on memory usage. This prevents the manual caching methods from being
possible. Other issues, such as render deferment and the newness of the
OpenCL API likely contributed to the slower results.

Rendered Output
McGuire and Hughes’ algorithm, whether implemented via shader or OpenCL,
generate identical output. In this section, we compare their quantity of rendered
items and the quality of the output with the new OpenCL capping method.

Rendered Quantity
The number of rendered objects effects the final rendering speed to some
degree. All three methods generate the same number of edge quads from a
given angle. However, though the new OpenCL capping method has about
double the number of caps to check, the number of output caps is usually about
half that of McGuire and Hughes’ capping method.

Rendered Quality
Figure 6 shows a sample object rendered with full quads. The new OpenCL
method on the left shows all edge gaps completely filled. The other artifacts are
from edge quads pushing through the mesh. On the right, McGuire and Hughes’
method of capping is shown. Notice the missing caps on the eyebrows and
extraneous caps sticking off the ends of other edges.

5

Figure 6: On the left, the new OpenCL capping method has far fewer artifacts
than the McGuire and Hughes’ capping method displayed on the right.
The quality can be further enhanced with the use of half-quads on contour
edges, but this would result in a further slowdown due to the complexity of
calculating the correct caps when there is such variability in the shape of
connecting edges.

Conclusion
Our new method of capping is more accurate, but much slower. It also has no
real memory advantages over the shader implementation. However, using
OpenCL to implement McGuire and Hughes’ algorithm holds much promise. It
saves a lot of memory and can render faster than shaders for some very
complicated meshes. Future improvements to OpenCL and the algorithm may
result in even higher speeds and better performance for simpler meshes.

Future Work
OpenCL was used in this paper to take the place of data texture lookups and
geometry shader usage suggested by the future work of McGuire and Hughes’
paper. Further, texture memory access is cached on GPUs, unlike other buffers.
The new OpenCL capping method could be implemented via geometry shaders
and data textures, which provides the higher accuracy of the new capping
method with speed closer to those of the shader-based algorithm.

If one implemented McGuire and Hughes’ algorithm on the GPU such that the
input data was duplicated rather than indexed, OpenCL’s manual caching
methods could be used. This should result in a much higher speed, but at the
cost of higher memory usage.

Microsoftʼs DirectCompute shaders have many of the same abilities as OpenCL
and any of the discussed methods could be implemented using that technology.
One advantage it has over OpenCL is the ability to export data directly to the
graphics pipeline. This will allow the edge and cap rendering passes to be
integrated into the computation passes. That ability to skip two render passes
could increase the speed slightly.

Chris Peters [Peters 10] suggested a capping method that preprocessed edges so
that both ends contain a “next” index. The next index points to an adjacent edge
connected to the same end point on a triangle. After doing the edge compute
pass, each drawable edge would be operated on twice, once for each end. At
each end of each drawable edge, the next index would be used to check the next
edge for its drawability. If it is drawable, a cap is formed between those two
edges. If it is not drawable, the next index of the second edge is checked, and so
on, until either a drawable edge is found, or the original edge is reached. If a
drawable edge connects to no drawable edges, no cap is drawn. This system
should give the same accuracy caps as new capping method, but without
needing to store or check every possible combination. The worst case number
of memory accesses is C + 1 + DATA, where C is the number of connecting
edges and DATA is the other drawable edgeʼs data needed to form the cap. This
technique would still use uncached GPU memory, but requires vastly fewer
memory accesses for the capping operation. This method could also potentially
lead to faster speeds for more complex meshes.

References
[Gooch et al. 99] - Gooch, Bruce, Peter-Pike J. Sloan, Amy Gooch, Peter

Shirley, and Richard Riesenfeld. 1999. “Interactive Technical
Illustration.” http://www.ppsloan.org/publications/iti99.pdf.

[Hall 03] - Hall, Tom. 2003. “Silhouette Tracking.” http://
www.bytegeistsoftware.com/various/SilhouetteTracking.pdf.

[Hertzmann and Zorin 00] - Hertzmann, Aaron, and Denis Zorin. 2000.
“Illustrating smooth surfaces.” http://mrl.nyu.edu/~dzorin/papers/
hertzmann2000iss.pdf.

[Lander 01] - Lander, Jeff. 2001. “Images from deep in the programmer's
cave.” Game Developer. May. 23-28.

[Markosian et al. 97] - Markosian, Lee, Michael A. Kowalski, Samuel J.
Trychin, Lubomir D. Bourdev, Daniel Goldstein, and John F.
Hughes. 1997. “Real-Time Nonphotorealistic Rendering.” ftp://
ftp.cs.brown.edu/pub/papers/graphics/research/sig97-npr.pdf.

[McGuire and Hughes 04] - McGuire, Morgan and John F. Hughes. 2004.
“Hardware-Determined Feature Edges.” http://
graphics.cs.williams.edu/papers/EdgesNPAR04/edges-NPAR04.pdf.

[Peters 10] - Peters, Chris. 2010. Personal Communication.

[Sander et al. 00] - Sander, Pedro V., Xianfeng Gu, Steven J. Gortler, Hugues
Hoppe, and John Snyder. 2000. “Silhouette Clipping.” http://
research.microsoft.com/en-us/um/people/hoppe/silclip.pdf.

Appendix: Depth-Scaled Edge Thickness
When scaling an edge’s thickness in screen-space, two types of artifacts occur.
First, perspective scaling is lost on objects, possibly confusing the user about
the distance of the object. Second, as a mesh gets further from the camera, the
edges will take up such a large portion of the displayed area that they
overpower the mesh itself, as seen in Figure 7.

Figure 7: This cube is far away from the camera, yet the edges remain the same
pixel width, overpowering the mesh.
To prevent this, we introduce a depth-based scaling factor into the width
calculation of the edges and caps. This value would be multiplied into the
perpendicular vector, screen-space normal vectors, and the middle vector at the
time of output.

In the process of creating the values necessary to create the edge, the edge
points v0 and v1 are taken from model-space, through view-space, and into
projection space, before later being sent to screen-space. Since the projection-
space location is known, we can get the view-space depth from the projection-
space z coordinate multiplied through the inverse projection matrix. As it turns
out, the inverse projection matrix as applied to the z coordinate is the
projection-space w coordinate multiplied by -1. To transform this value into a
proper scaling factor, it must be inverted and negated due to the orientation of
the camera in view-space. Further, we can prevent the creation of edges thinner
than a single pixel by capping the minimum value at 1. The resulting scaling
factor is displayed below:

depthScalingFactor = max(1.0, 1.0 / projected.w);

A different scaling factor is needed for both ends of the edge. In the equation
above, projected represents the s0 or s1 values before they have been sent to
screen-space.

The user can then freely change the value over the projected point’s w to
whatever custom thickness scaling factor they desire. Edges and caps will
realistically grow smaller as they grow more distant, but never fully disappear.

6

