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Abstract
At its most basic, object-space edge detection iterates through all polygonal 
edges in each mesh to find those edges that satisfy one or more edge tests. 
Those that do are expanded and rendered, while the remainder are ignored. 
These 3D edges, and their resulting accuracy and customizability, set object-
space methods apart from all other categories of edge detection. The speed and 
memory limitations of iterating through all polygonal edges in each mesh each 
frame has inspired optimization research.

In this paper, we explore methods to calculate object-space edges utilizing 
programmable GPU technologies, including OpenCL. The OpenCL methods 
explored allow for a significant reduction in calculation quantity. Some also 
provide a reduction in rendering artifacts and memory usage over previous 
GPU techniques. Unfortunately, most uses of OpenCL for edge detection results 
in slower performance than shader-based techniques, though variations and 
optimizations may reduce this disadvantage in the future.

Background
Edge detection and rendering is an important non-photorealistic rendering 
technique. Rendered edges can be used for a multitude of purposes including 
object differentiation, structural enhancement, highlighting, and blur-based anti-
aliasing. They also are a required component of several graphical styles such as 
toon rendering and sketchy rendering.

Edge Types
There are several types of edges. Each type requires different detection tests, 
and may not be detectable with a given method.

• Contour: A polygon edge that connects two polygons, one front-facing and 
the other back-facing.

• Crease: A polygon edge that connects two polygons that are within some 
user-defined angular distance of each other.

• Boundary: A polygon edge that forms the side for only one polygon.
• Intersection: A collision of two polygons such that the line formed along the 

intersection is a polygon edge of only one or neither of the colliding 
polygons.

• Marked: A polygon edge flagged to always be rendered as an edge.
For the purposes of this paper, we ignore further discussion of intersection 
edges. Intersection edges are not detectable with object-space methods.

Edge Detection Method Categories
Object-space edge detection refers to one category of edge detection. The other 
categories are Hardware, Image-space, and Miscellaneous.

• Hardware: In these methods, edges are not detected, but directly rendered 
as a byproduct of some other operation, or series of operations. These 
methods are very fast, available on almost all hardware, and do not require 
mesh preprocessing or additional memory. However, they typically only 
render contours and they lack customizability.

• Image-space: In this method, two rendering passes are used. In the first, 
scene data, like depth and normal information, is rendered and stored to the 
GPU temporarily. In the second pass, the stored data is used with image-
processing techniques to determine areas of rapid change, which generally 
correspond to edges. This method has constant-speed edge detection, 
because the speed of the second pass is dependent on the number of pixels in 
the viewport, not the number of objects rendered. It can also detect edges 
easily that other methods cannot. However, the edge accuracy is lacking and 
the edge thickness is inconsistent. The image-space, like the hardware 
methods, does not produce edges that are readily customizable.

• Object-space: In these methods, some or all of the polygon edges of each 
mesh are tested for their drawability. Those edges that pass the test are then 
expanded into quads or other structures, where they are rendered like any 
other geometry. Those polygon edges not drawable are discarded. Since the 
edge detecting occurs in 3D space, the results are more accurate. The output 
is 3D geometry, so the edges can be customized to a great degree, including 
texturing, animating, and shading. However, the number of tests and 

rendering operations for each edge causes object-space edge detection to be 
the slowest form of edge detection.

• Miscellaneous: These methods share no direct similarities with each other, 
though in terms of their positive and negative qualities, they resemble 
hardware methods.

In this paper, we only focus on object-space edge detection, as it is the method 
used by this paper’s OpenCL-based edge detection.

OpenCL
OpenCL, which stands for Open Computing Language, creates a standardized 
interface for computational tasks on a variety of devices. It is specifically 
focused on data-parallel tasks, which require a single set of relatively simple 
operations be performed on massive quantities of nearly atomic data. This is 
essentially the form of calculation found in GPU rasterization. Not surprisingly, 
GPUs are often the preferred device for utilizing OpenCL. Like vertex shaders, 
an OpenCL program (called a kernel) can access data stored on the GPU and 
perform operations on it before creating output. However, OpenCL is more free 
in what it can do and what it can access. Though more versatile, without careful 
planning an OpenCL operation can take far longer than the equivalent operation 
implemented as a shader.

Previous Work
Edge detection algorithms are very old and well documented. However, the 
paper by Markosian et al. [Markosian et al. 97] represents some of the first 
work in real-time edge detection. They stored edge adjacency information for 
each polygon edge. Contour edges tend to form loops around a mesh, so when a 
contour edge was found, they recursively performed the contour edge test on 
the connecting edges first. This method tends to detect the longest, and 
therefore most significant, edges with a minimal number of random tests. 
Additionally, a small portion of contour edges detected each frame were also 
stored for the next frame as starting points for the next round of edge tests. 
Without sudden movements, a significant number of contour edges remain the 
same from frame to frame. By checking only a very small percentage of all 
edges, they found a fivefold increase in the rendering speed over testing all 
polygon edges individually. Of course, some contour edges could be missed 
entirely from frame to frame, possibly resulting in flickering.

Gooch et al. [Gooch et al. 99] described a method where they stored edgesʼ 
normal arc on a sphere surrounding the object. Groups of similar arcs, in gauss 
map format, were stored hierarchically so that groups of edges could quickly be 
deemed all back-facing or all front-facing. A plane was placed at the origin of 
the sphere and then aligned perpendicular with the view vector. Edges whose 
arc intersect the plane are contour edges. This technique allowed contour edge 
detection to be sped up by 1.3 times for their S. Crank mesh and 5.1 times for a 
sphere. Unfortunately, this technique only works well under orthographic 
projection.

In a similar idea, Sander et al. [Sander et al. 00] created a hierarchical search 
tree of polygons. At each node, they created anchored cones that represented 
the maximum range of the normals possessed by vertices in the node. This 
information can be used to quickly determine that no contour edges are possible 
for whole sets of nodes without testing individual edges.

Jeff Lander [Lander 01] documented the optimization of ignoring edges that 
have co-planar adjacent polygons. Flat planes only generate drawable contour 
edges on their outside edges, not their internal edges, and they lack the angular 
difference between adjacent polygons to generate crease edges. During the 
preprocessing step, an additional test checks for co-planar adjacent polygons. If 
found, the edge is not added to the list of edges to test. If a mesh was 
constructed using primarily quads, this optimization can reduce the number of 
edge tests significantly: over 20% in the case of the Utah Teapot.

Other imaginative edge storage and detection methods exist. Aaron Hertzmann 
and Dennis Zorin [Hertzmann and Zorin 00] described a method of using 4D 
dual surfaces to determine the contour edges with curve-plane intersections. 
Tom Hall [Hall 03] created a modification of Markosian et al.ʼs technique by 
focusing almost exclusively on tracking contour changes from frame to frame. 
By looking at adjacent edges to previously found edges and noticing the 
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relative camera change, he was able to significantly reduce the number of edges 
tested. This method worked especially well with highly tessellated meshes.

Finally, Morgan McGuire and John F. Hughes [McGuire and Hughes 04] 
detailed a method to shift the entirety of the edge detection and rendering to the 
graphics card via programmable shaders. Copies of adjacency, vertex, and 
normal information were stored in vertex buffer arrays and accessed within the 
vertex shader. If the edge was found drawable, the degenerate duplicate vertices 
were turned into screen-aligned quads. Otherwise, they were shifted behind the 
camera, where they would be clipped during the rendering process. McGuire 
and Hughes also took a critical look at how the thick edge gaps could be filled 
effectively. Their paper formed the basis for OpenCL edge detection research.

Hardware Determined Feature Edges
We focused heavily on improving the object-space method described by 
Morgan McGuire and John F. Hughes [McGuire and Hughes 04]. To provide 
context and ease understanding, we detail here McGuire and Hughes  ̓work as it 
relates to our contributions.

McGuire and Hughes  ̓ goal was to transfer all detection and rendering of edges 
to the GPU, gaining the speed of parallel calculation and removing the 
bottleneck of geometry data transfer from the CPU to the GPU. Parallel 
computation and the technology of the time forced them to test every polygon 
edge independently, unlike some of the object-space optimizations. As a result, 
a large amount of GPU memory is required.

The method used four render passes:
• Mesh pass: Render mesh normally at a slight backward offset
• Edge pass: Render drawable edges as expanded quads or lines
• Cap pass (first side): Render the first side cap of each drawable edge
• Cap pass (second side): Render the second side cap of each drawable edge

Data Structure
McGuire and Hughes created an edge mesh data structure that contained four 
edge vertices for each unique polygon edge. Each edge vertex contained values 
required for edge detection and generation. Those that can be represented 
geometrically are shown in Figure 1.

Figure 1: The important geometric values for each edge in McGuire and 
Hughesʼ method: v0, v1, v2, and v3 are vertices on two polygons that share an 
edge. n0 and n1 are the vertex normals for v0 and v1, respectively. v3 may not 
exist in the case of a boundary edge.
The values in each edge vertex are:
• v0: first vertex in the edge
• v1: second vertex in the edge
• v2: final vertex that, with v0 and v1, makes the first polygon
• v3: final vertex that, with v0 and v1, makes the second polygon
• n0: v0ʼs normal vector
• n1: v1ʼs normal vector
• r: random scalar used in texture parameterization
• i: scalar from 0 to 3 that differentiates duplicates in the edge mesh
The r parameter is ignored for this paper. The i parameter is used to pick what 
value to output after an edge is detected drawable. If the edge is a boundary 
edge, there is no v3 vertex. In that case, v3 is set equal to v0.

For each polygon edge, all of the above values are obtained from the mesh, 
except for i. The newly formed edge vertex is duplicated three times. Each of 
the now four edge vertices with the same data are given a different, ordered i 
value from 0 to 3. All four of these edge vertices for each polygon edge is 
stored with all other edge vertices in an edge mesh. Finally, the edge mesh is 
copied into vertex buffers on the GPU for later use. This preprocessing step is 

Figure 8-1: The important geometric values for each edge in McGuire and Hughesʼ method: v0, 
v1, v2, and v3 are vertices on two polygons that share an edge. n0 and n1 are the vertex normals 
for v0 and v1, respectively.

The values in each edge vertex are:

• v0 - first vertex in the edge

• v1 - second vertex in the edge

• v2 - final vertex that, with v0 and v1, makes the first polygon

• v3 - final vertex that, with v0 and v1, makes the second polygon

• n0 - v0ʼs normal vector

• n1 - v1ʼs normal vector

• r - random scalar used in texture parameterization

• i - scalar from 0 to 3 that differentiates duplicates in the edge mesh

v0, v1, v2, v3, n0, and n1 are all 3D vectors. r is used only for object-space 
texture parameterization. i is used to pick different output vertices in the vertex 
shader so that the edge will become non-degenerate. If the edge is a boundary 
edge, there is no v3 vertex. In that case, v3 should be set equal to v0.

For each polygon edge, all of the above values are obtained from the mesh, 
except for i. The newly formed edge vertex is duplicated three times. Each of the 
now four edge vertices with the same data are given a different, ordered i value 
from 0 to 3. All four of these edge vertices for each polygon edge is stored with 
all other edge vertices in an edge mesh. Finally, the edge mesh is copied into 
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quite expensive, but once complete, all edge detection and rendering can be 
accomplished by the GPU with no special data transfer whatsoever.

The user needs some way of referencing the edge mesh buffers on the GPU. 
Generating an index array buffer containing sequential numbers from 0 to (4E - 
1), where E is the number of unique polygon edges, allows the data to be 
referenced and rendered with a single render call. Furthermore, other index 
array buffers can be created to reference only the first three, or first two, i 
values of each set of four edge vertices. Such index array buffers are useful for 
rendering caps and thin edges.

Edge Detection
Contour edges can be detected by finding the dot product of both adjacent 
polygons’ face normals with the view vector. If the sign of the two values is 
different, the polygon edge is a contour. Crease edges can be detected using the 
face normals of the adjacent polygons as well. Since the face normals’ angular 
distance is inversely proportional to the angular “sharpness” of the two adjacent 
polygons, polygon edges are found to be creases if the dot product of the two 
face normals is less than the negative cosine of the user-defined angle. This will 
detect crease edges that are any sharper (smaller angular distance between 
adjacent polygons) than the user-defined angle. Finally, boundary and marked 
edges are detected by checking v0 and v3 for equality. The detection tests are 
described algorithmically below.

• Contour: [(DotProduct(Na, V) * DotProduct(Nb, V)) < 0]
• Crease: [DotProduct(Na, Nb) < -cos(θ)]
• Boundary and Marked: [v0 == v3]
Where Na and Nb are the face normals of the two adjacent polygons, V is the 
view vector, and θ is the user-defined angle.
Once an edge is detected, one of several rendering methods can be used to 
create a viewable edge feature.

Edge Rendering
The user has several choices for what type of edge to generate, including a 
rasterized line, full quad, or half-quad. For each type of output, the i value is 
used to determine which of several output vertices should be generated.

Rasterized Line Edge
For rasterized lines, only two duplicates per edge vertex are needed in the edge 
mesh. If available, itʼs most efficient to use an index buffer that contains only 
the indices of the first two edge vertices per set in the edge mesh. When the i 
value is 0, the vertex shader should output MVP * v0. Otherwise, it should 
output MVP * v1. MVP is the ModelViewProjection matrix.

McGuire and Hughes create edges, and later caps, in screen-space to ensure a 
consistent thickness. The screen-space versions of some edge components are 
needed to accomplish the creation process. Those values are:
• s0: v0 in screen-space
• s1: v1 in screen-space
• m0: n0 in screen-space
• m1: n1 in screen-space
• p: normalized perpendicular vector to the screen-space edge vector (s1 - s0)
These values are calculated via:

s0 vec4 s0 = MVP * vec4(v0.xyz, 1.0);
s0.xy = (s0.xy / s0.w) * vec2(Width, Height);

s1 vec4 s1 = MVP * vec4(v1.xyz, 1.0);
s1.xy = (s1.xy / s1.w) * vec2(Width, Height);

m0 vec4 temp = MVP * vec4(v0.xyz + n0.xyz, 1.0);
temp.xy = (temp.xy / temp.w) * vec2(Width, Height);
vec2 m0 = normalize(temp.xy - s0.xy);

m1 vec4 temp = MVP * vec4(v1.xyz + n1.xyz, 1.0);
temp.xy = (temp.xy / temp.w) * vec2(Width, Height);
vec2 m1 = normalize(temp.xy - s1.xy);

p vec2 p = normalize(vec2(s0.y - s1.y, s1.x - s0.x));

Where Width and Height are the width and height of the viewport, respectively. 
The above functions use component-based division and swizzle vector 
operations. The p vector’s length can be modified to adjust the screen-space 
thickness of rendered edges.

Full Quad Edges
Full quad edges render on both sides of the screen-space edge, as seen in figure 
2. On contour edges, the “inner” half would penetrate the mesh itself, which 
can sometimes lead to artifacts. However, for most marked and boundary edges, 

2



and all crease edges that are not also contours, these are the preferred output 
type. Using the i value, one of four calculations listed below are performed on 
the input edge vertex to create the output vertex. Note that the output vertices 
are converted from screen-space back to projection-space, which is the 
expected output format for vertex shaders.

i = 0 vec4((s0.xy - p.xy) / vec2(Width, Height) * s0.w, 
s0.zw)

i = 1 vec4((s1.xy - p.xy) / vec2(Width, Height) * s1.w, 
s1.zw)

i = 2 vec4((s1.xy + p.xy) / vec2(Width, Height) * s1.w, 
s1.zw)

i = 3 vec4((s0.xy + p.xy) / vec2(Width, Height) * s0.w, 
s0.zw)

Figure 2: Depending on the i value, the output point is calculated using the two 
screen-space edge points and the perpendicular vector.

Half-Quad Edges
Half-quad edges are only suitable for contour edge rendering. To ensure that the 
half-quad is rendered on the “outside” of the mesh, the p value is modified so it 
always points in the same direction as the m0 vector via the sign function. As 
with the full quad method, the i value is used to determine which of four output 
values to create. Figure 3 provides an illustration of the output.

i = 0 vec4(s0.xy / vec2(Width, Height) * s0.w, s0.zw)

i = 1 vec4(s1.xy / vec2(Width, Height) * s1.w, s1.zw)

i = 2 vec4((s1.xy + p.xy * sign(dot(m0, p))) / vec2(Width, 
Height) * s1.w, s1.zw)

i = 3 vec4((s0.xy + p.xy * sign(dot(m0, p))) / vec2(Width, 
Height) * s0.w, s0.zw)

Figure 3: The p vector is modified to point outward, so the edge half-quad will 
only render on the outside of the mesh.

Non-Drawable Edges
If an edge fails all the edge tests, it is a non-drawable edge. Optimally, these 
edge vertices would be removed from the pipeline at this point, since they do 
not create valid output. However, vertex shaders cannot delete vertices. 
McGuire and Hughes solved this issue by outputting a single vertex for all i 
values: (0, 0, -1, 1). These vertices will not only be degenerate, but in 
projection-space they are behind the camera and will be clipped before reaching 
the fragment shader.

Edge Caps
Edges rendered with a thickness of greater than a few pixels will cause visible 
gaps to occur at many of the edge connection points, as in the left side of figure 
4. McGuire and Hughes accounted for these by rendering half-caps on both 
ends of each drawable edge, connecting at a point along the screen-space 
normal of the side in question to create a cap that fills the gap completely 
(figure 4 on right). The half-caps can be generated from the same edge mesh 
data as the edge, but they need a different index array buffer. The cap index 
array buffer needs index values that reference only the first three duplicates of 
each set of edge vertices.

As mentioned earlier, the two caps are generated in separate render passes: the 
first deals with the v0 side and the second deals with the v1 side. They are 
rendered as triangles, rather than quads. The output vertices are described 
below.

Half-Cap Output On v0 Side
i = 0 vec4(s0.xy / vec2(Width, Height) * s0.w, s0.zw)

i = 1 vec4((s0 + p * sign(dot(m0, p))) / vec2(Width, Height) 
* s0.w, s0.zw)

i = 2 vec4((s0.xy + m0) / vec2(Width, Height) * s0.w, s0.zw)

Half-Cap Output On v1 Side
i = 0 vec4(s1.xy / vec2(Width, Height) * s1.w, s1.zw)

i = 1 vec4((s1 + p * sign(dot(m1, p))) / vec2(Width, Height) 
* s1.w, s1.zw)

i = 2 vec4((s1.xy + m1) / vec2(Width, Height) * s1.w, s1.zw)

The p, m0, and m1 vectors should all be scaled by the same value used when 
scaling the edge if the user desires a specific screen-space thickness.

Figure 4: On the left, two thick screen-space edge quads connect to create a 
visible gap. Using the screen-space projection of the vertex normal they share, 
the gap can be filled with a cap formed from one half-cap from each edge (one 
blue, one red), as seen on the right.

Issues
McGuire and Hughes’ edge and capping method are highly effective and very 
fast on modern hardware, but they have a few drawbacks.

• Calculation Duplication: Each polygon edge is tested for drawability ten 
times: four for the edge and three for each half-cap. Once an edge is 
determined drawable, all the calculations necessary to create the output 
vertices is also duplicated. Geometry shaders usage was proposed as a 
solution, since it can output more than one vertex per invocation.

• High GPU Memory Usage: The edge mesh also requires at least seventy-
two extra floats and four integer values for every polygon edge. All of this 
information is already on the GPU in the form of vertices, vertex normals, 
and indices. McGuire and Hughes suggested using data textures to reduce 
the memory usage by a factor of four.

• Incorrect Caps: When the screen-space projection of the vertex normals 
does not correspond well to the curvature of the edge, caps can be generated 
on the wrong side of the edge under certain perspectives. McGuire and 
Hughes suggested rendering caps on both sides of the edge when the error is 
likely to occur.

• Screen-Space Thickened Edges: While it is trivial to scale the thickness of 
the drawn edges and caps, the use of screen-space scaling makes all edges 
have the same thickness no matter their distance from the camera. This can 
cause artifacts and confusion about the distance of the object. Though 
screen-space thickness may be desired, having a depth-based scaling factor 
is beneficial for other graphical requirements.

Using OpenCL can help with the first three issues. The last issue is dealt with in 
the appendix.

Object-Space Edge Detection Using OpenCL
After researching and implementing McGuire and Hughesʼ method, we 
attempted to improve upon it. The most extensive research focused on finding a 
replacement technique that would take advantage of the new capabilities of 
OpenCL.

Relevant OpenCL Capabilities
OpenCL has several abilities that make it more flexible than shaders. Those that 
are relevant to the detection of edges are listed below.

• OpenGL Buffer Interoperability: An instance of OpenCL, if built using an 
OpenGL context, will have direct access to buffers from OpenGL for both 
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reading and writing. However, locking the buffers is necessary in some 
cases.

• Read Freedom: With access to all buffers on the GPU, OpenCL can access 
multiple buffers from within the same kernel. OpenCL can also request data 
from buffers out of order, unlike shaders.

• Write Freedom: As long as there is enough space, a single OpenCL kernel 
can output any number of values to any number of buffers.

With these abilities, an OpenCL-based edge detection algorithm can make use 
of data already on the GPU, removing the need for data duplication. The 
calculations also need not be repeated, since multiple values can be output from 
a single kernel.

Edge Data Structures
Because almost all the data needed for the edge detection step already exists on 
the GPU for normal mesh rendering, OpenCL’s edge mesh structure need only 
contain the vertex indices for each edge’s adjacency information.

• i0: index of first vertex in the edge
• i1: index of second vertex in the edge
• i2: index of final vertex that, with i0 and i1, indexes the first polygon
• i3: index of final vertex that, with i0 and i1, indexes the second polygon
These values can be used to index directly into the vertex and normal buffers. 
We only need one copy of them because OpenCL can output multiple values 
from the same kernel. This can represent a significant reduction in the memory 
requirements of the edge detection.

Because OpenCL cannot export vertices to the rendering pipeline directly, the 
output values, both edge quads and degenerate quads must be temporarily 
stored to the GPU’s memory for rendering in another pass. This edge out buffer 
must be created to hold 4E four dimensional vertices (or 16E floats) values, 
where E is the number of edges in the mesh.

Edge Detection and Rendering
The edge detection tests are exactly the same as those in McGuire and Hughes’ 
method with one exception. Since index values are available, the boundary and 
marked edge tests can be accomplished by checking for index equality of i0 and 
i3, rather than checking the indexed vertices.

As before, if the edge is not drawable, a degenerate quad should be exported to 
the edge out buffer made up of the vertex (0, 0, -1, 1). For drawable edges, they 
should be expanded as in McGuire and Hughes’ method before being exported. 
In both cases, all the vertices in the projection-space quads are exported in a 
single step to their appropriate location in the edge out buffer, using the same 
identifying index used to get the input edge information.

The edge detection kernel will need access to the ModelViewProjection matrix 
and the viewport dimensions to calculate the screen-space position of the 
vertices. Since OpenCL is not part of the shading environment, these values 
must be manually sent to the kernel each frame. The edge out buffer, after the 
edge detection step is complete, will contain sets of four projection-space 
vertices representing the edge quads or degenerate quads. Therefore, when 
rendering the edge out buffer as quads, the vertex shader should apply no 
transforms on the vertices at all.

McGuire and Hughes-based Capping
Beyond edges, the McGuire and Hughes’ capping method can also be 
implemented in OpenCL. In fact, it requires no additional data to integrate it 
into the edge detection system described above. It only requires two additional 
output buffers capable of storing at least 3E four dimensional vertices (12E 
floats) each, where E is the number of edges in the mesh. Again, this is due to 
OpenCL’s inability to export data directly to the graphics pipeline.

If the edge was detected drawable, the two edge half-caps can be immediately 
generated. The normal information needed can be accessed using the index 
values i0 and i1 on the normal buffer. From then on, the vertex creation process 
is identical. As with the edges, the rendering passes for the cap buffers can 
simply pass their vertex data through the vertex shader.

Edge Adjacency Capping
OpenCL’s abilities to access and manipulate many buffers provides for another 
method of edge capping. In McGuire and Hughes’ caps, if the projected normal 
did not correspond well to the curvature of the mesh, caps could be generated 
on the wrong side of the edge. With access all edges, we can make a list of 
connected edges. Using this, the capping process is no longer a blind activity 
that generates two half-caps per drawable edge. Instead, caps are created 

relative to the vertex to which they connect. With both edges connecting at that 
vertex available, we can determine exactly which caps should be created, and 
exactly what size to make them so they always fill the gap perfectly. This 
eliminates the need for vertex normals and prevents the problems with caps 
being generated incorrectly. A number of edge orientations and the caps they 
form are displayed in figure 5.

Figure 5: No matter the orientation of the two edges or the normal, a perfect 
cap is formed to fill the gap every time.
A cap buffer must be preprocessed. It stores indices like the edge buffer. 
However, the indices reference index sets in the edge buffer. This makes a 
single potential cap from every pair of connected edges. Each vertex in this 
“cap mesh” contains:

• e0: index of first edge
• e1: index of second edge
As with the edge buffer, the cap buffer needs a corresponding cap out buffer to 
store the output caps for later rendering. It must be big enough to hold 4C four 
dimensional vertices (16C floats), where C is the number of cap vertices in the 
cap buffer.

Cap Detection
In this method of capping, only those caps for whom both connected edges are 
drawable should be drawn. Thankfully, because the edge detection step must 
store its output data temporarily, it is trivial to determine if both are drawable. 
After obtaining the projection-space edge quads from both connected edges, 
drawability can be determined by checking one of the vertices in each for 
equality with the degenerate vertex (0, 0, -1, 1). To reduce the test to a single 
comparison, during the edge test, degenerate quads can be exported that use the 
vertex (NaN, 0, -1, 1). Then drawability can be determined by checking the x 
component of the first vertex of each quad for being NaN (Not a Number). The 
values remain degenerate in this variation, so they will not generate artifacts 
when rendering the edges.

Cap Creation and Rendering
If both edges are drawable, the cap should be created. The projection-space 
edge quads are used to determine where to place the cap. However, there is no 
guarantee of the edges’ orientations. We must ensure they are aligned with each 
other, which for this paper means that the i1 side of edge one is connected to 
the i0 side of edge two. This is easily done by using the cap buffer’s indices to 
look up the edge indices for each edge and determining if one or both edges’ 
output values should be flipped before use.

Once aligned, the projection-space edge points can be transformed to screen-
space using homogeneous division and multiplication by the viewport width 
and height. At this point, the values can differ significantly depending on the 
usage of half-quads. If half-quads were used in addition to full quads, a large 
amount of logic or additional data is needed to successfully determine the exact 
connection point for the aligned edges. For the sake of time, we assume that 
only full quads were used.

For the first edge quad, the point halfway between the first and last screen-
space edge points represents the left edge point, called sL. The halfway point 
between the second and third screen-space edge points for the first edge quad is 
the point of connection for the two edges, called sM. Finally, the halfway point 
between the second and third screen-space edge points of the second edge quad 
represent the right edge point, called sR.

The “middle vector” can be determined from sL, sM, and sR. It takes the place 
of the screen-space normal in the cap creation process. It is the vector bisecting 
the two edge vectors, inverted. It is calculated via the formula below.
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vec2 middleVector = -normalize(normalize(sL.xy - sM.xy) + 
normalize(sR.xy - sM.xy));

Once the middle vector is obtained, the only remaining required values are the 
two perpendicular vectors, one for each edge. After calculation, they have to be 
aligned to point in the same direction as the middle vector. They are calculated 
as below.

vec2 p0 = normalize((vec2)(sL.y - sM.y, sM.x - sL.x));
p0 = p0 * sign(dot(p0, middleVector));

vec2 p1 = normalize((vec2)(sR.y - sM.y, sM.x - sR.x));
p1 = p1 * sign(dot(p1, middleVector));

With all these values available, the four cap vertices can be created, as listed in 
the table below. These are all exported to the cap out buffer in one pass. As with 
the edges, those caps that should not be drawn should output a degenerate quad 
using the vertex (0, 0, -1, 1).

0 vec4((sM.xy + middleVector) / sM.w * vec2(Width, 
Height), sM.zw)

1 vec4((sM.xy + p0) / sM.w * vec2(Width, Height), sM.zw)

2 vec4(sM.xy / sM.w * vec2(Width, Height), sM.zw)

3 vec4((sM.xy + p1) / sM.w * vec2(Width, Height), sM.zw)

Comparative Analysis
We compare the memory usage, speed, and rendered output of McGuire and 
Hughes’ method in shaders, McGuire and Hughes’ method in OpenCL, and our 
new OpenCL method.

Memory Usage
Calculating the total memory footprint of both edges and caps is dependent on 
the number of possible edges and caps, the view direction, and the type of mesh 
in question. We compare the number of bits required to store the data necessary 
both to calculate the edges and caps, and in the case of OpenCL, the bits 
required to temporarily store the output for later rendering. The shader 
implementation must have some memory to store the output of its calculations, 
but it is hidden by the implementation and not directly measurable. 32-bit float 
and integer types were assumed. Values are in bits.

McGuire & Hughes 
(shader)

McGuire & Hughes 
(shader)

McGuire & Hughes 
(OpenCL)

McGuire & Hughes 
(OpenCL) New OpenCLNew OpenCL

Edge Cap Edge Cap Edge Cap

2688 96 640 512 640 576

At this point, the edge to cap ratios differ. The number of caps necessary to test 
is significantly higher for the new OpenCL capping method, whereas in both 
methods that implement McGuire and Hughes’ capping, the cap to edge ratio is 
always 2. To get a good sample, a variety of meshes were tested, rendered from 
a camera position of (5, 5, 5) with the unit-sized mesh at the origin. From this, 
the below table illustrates the total number of bits used for each type of object 
in all three methods.

McGuire & Hughes 
(shader)

McGuire & Hughes 
(OpenCL) New OpenCL

Cube 69120 39936 29184

Cylinder 276480 159744 245760

Cone 184320 106496 381952

Quad Sphere 5806080 3354624 5289984

Ico Sphere 5529600 3194880 6741120

Teapot 3398400 1963520 3301120

Monkey 4173120 2411136 5067648

Bunny 59938560 34631168 75118720

By converting these bit requirements relative to the amount used by our base 
case (McGuire and Hughes’ algorithm in shader), we get a list of memory usage 
ratios.

M&H (OpenCL) to
M&H (Shader)

New OpenCL to
M&H (Shader)

Cube 0.577 0.422

Cylinder 0.577 0.888

Cone 0.577 2.07

Quad Sphere 0.577 0.911

Ico Sphere 0.577 1.21

Teapot 0.577 0.971

Monkey 0.577 1.21

Bunny 0.577 1.25

Implementing McGuire and Hughes’ algorithm on the GPU, even with the extra 
temporary storage requirements, yields a significant memory savings. The new 
OpenCL capping method, on the other hand, varies significantly based on the 
number of connections per point in the mesh. Overall, the memory usage is 
about the same.

Speed
To measure the speed of the three methods, we compare the framerates from the 
same view direction for the same set of example objects.

McGuire & Hughes 
(shader)

McGuire & Hughes 
(OpenCL) New OpenCL

Cube 1173 762 760

Cylinder 1103 735 733

Cone 1244 670 724

Quad Sphere 713 584 416

Ico Sphere 739 593 360

Teapot 850 631 464

Monkey 770 634 334

Bunny 134 159 31

Clearly, the shader implementation is the fastest for most meshes. Only for very 
complicated meshes is the McGuire and Hughes’ method implemented in 
OpenCL faster than the shader. All tests of the new OpenCL capping method 
resulted in significantly slower speeds than the shader-based edge detection.

The reasons for the speed differences are numerous. OpenCL cannot short-
circuit code, so the worst-case calculation path is effectively always used. The 
new OpenCL capping method relied upon short-circuiting for its theoretically 
faster speeds. McGuire and Hughes’ algorithm did not rely on short-circuiting, 
and so had effectively fewer instructions than the new OpenCL method. 
Additionally, memory access in the shader is always cached, because it is 
accessed in order. Both OpenCL methods access the memory out of order to 
save on memory usage. This prevents the manual caching methods from being 
possible. Other issues, such as render deferment and the newness of the 
OpenCL API likely contributed to the slower results.

Rendered Output
McGuire and Hughes’ algorithm, whether implemented via shader or OpenCL, 
generate identical output. In this section, we compare their quantity of rendered 
items and the quality of the output with the new OpenCL capping method.

Rendered Quantity
The number of rendered objects effects the final rendering speed to some 
degree. All three methods generate the same number of edge quads from a 
given angle. However, though the new OpenCL capping method has about 
double the number of caps to check, the number of output caps is usually about 
half that of McGuire and Hughes’ capping method.

Rendered Quality
Figure 6 shows a sample object rendered with full quads. The new OpenCL 
method on the left shows all edge gaps completely filled. The other artifacts are 
from edge quads pushing through the mesh. On the right, McGuire and Hughes’ 
method of capping is shown. Notice the missing caps on the eyebrows and 
extraneous caps sticking off the ends of other edges.
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Figure 6: On the left, the new OpenCL capping method has far fewer artifacts 
than the McGuire and Hughes’ capping method displayed on the right.
The quality can be further enhanced with the use of half-quads on contour 
edges, but this would result in a further slowdown due to the complexity of 
calculating the correct caps when there is such variability in the shape of 
connecting edges.

Conclusion
Our new method of capping is more accurate, but much slower. It also has no  
real memory advantages over the shader implementation. However, using 
OpenCL to implement McGuire and Hughes’ algorithm holds much promise. It 
saves a lot of memory and can render faster than shaders for some very 
complicated meshes. Future improvements to OpenCL and the algorithm may 
result in even higher speeds and better performance for simpler meshes.

Future Work
OpenCL was used in this paper to take the place of data texture lookups and 
geometry shader usage suggested by the future work of McGuire and Hughes’ 
paper. Further, texture memory access is cached on GPUs, unlike other buffers. 
The new OpenCL capping method could be implemented via geometry shaders 
and data textures, which provides the higher accuracy of the new capping 
method with speed closer to those of the shader-based algorithm.

If one implemented McGuire and Hughes’ algorithm on the GPU such that the 
input data was duplicated rather than indexed, OpenCL’s manual caching 
methods could be used. This should result in a much higher speed, but at the 
cost of higher memory usage.

Microsoftʼs DirectCompute shaders have many of the same abilities as OpenCL 
and any of the discussed methods could be implemented using that technology. 
One advantage it has over OpenCL is the ability to export data directly to the 
graphics pipeline. This will allow the edge and cap rendering passes to be 
integrated into the computation passes. That ability to skip two render passes 
could increase the speed slightly.

Chris Peters [Peters 10] suggested a capping method that preprocessed edges so 
that both ends contain a “next” index. The next index points to an adjacent edge 
connected to the same end point on a triangle. After doing the edge compute 
pass, each drawable edge would be operated on twice, once for each end. At 
each end of each drawable edge, the next index would be used to check the next 
edge for its drawability. If it is drawable, a cap is formed between those two 
edges. If it is not drawable, the next index of the second edge is checked, and so 
on, until either a drawable edge is found, or the original edge is reached. If a 
drawable edge connects to no drawable edges, no cap is drawn. This system 
should give the same accuracy caps as new capping method, but without 
needing to store or check every possible combination. The worst case number 
of memory accesses is C + 1 + DATA, where C is the number of connecting 
edges and DATA is the other drawable edgeʼs data needed to form the cap. This 
technique would still use uncached GPU memory, but requires vastly fewer 
memory accesses for the capping operation. This method could also potentially 
lead to faster speeds for more complex meshes.
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Appendix: Depth-Scaled Edge Thickness
When scaling an edge’s thickness in screen-space, two types of artifacts occur. 
First, perspective scaling is lost on objects, possibly confusing the user about 
the distance of the object. Second, as a mesh gets further from the camera, the 
edges will take up such a large portion of the displayed area that they 
overpower the mesh itself, as seen in Figure 7.

Figure 7: This cube is far away from the camera, yet the edges remain the same 
pixel width, overpowering the mesh.
To prevent this, we introduce a depth-based scaling factor into the width 
calculation of the edges and caps. This value would be multiplied into the 
perpendicular vector, screen-space normal vectors, and the middle vector at the 
time of output.

In the process of creating the values necessary to create the edge, the edge 
points v0 and v1 are taken from model-space, through view-space, and into 
projection space, before later being sent to screen-space. Since the projection-
space location is known, we can get the view-space depth from the projection-
space z coordinate multiplied through the inverse projection matrix. As it turns 
out, the inverse projection matrix as applied to the z coordinate is the 
projection-space w coordinate multiplied by -1. To transform this value into a 
proper scaling factor, it must be inverted and negated due to the orientation of 
the camera in view-space. Further, we can prevent the creation of edges thinner 
than a single pixel by capping the minimum value at 1. The resulting scaling 
factor is displayed below:

depthScalingFactor = max(1.0, 1.0 / projected.w);

A different scaling factor is needed for both ends of the edge. In the equation 
above, projected represents the s0 or s1 values before they have been sent to 
screen-space.

The user can then freely change the value over the projected point’s w to 
whatever custom thickness scaling factor they desire. Edges and caps will 
realistically grow smaller as they grow more distant, but never fully disappear.
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