
Edge Detection with OpenCL
By Dwight House
October 20th, 2010

Quick Life Story

Born in Shreveport, lived in Haughton

2007 Bachelor of Science in Computer Science

Louisiana State University Shreveport

2010 Master of Science in Computer Science

DigiPen Institute of Technology

Focused on game programming and graphics

Now seeking employment

Talk Overview

1. Rendering Overview

2. Terminology and Properties

3. Overview of Edge Detection Methods

4. Research Inspiration

5. OpenCL Edge Detection

6. Results Analysis

7. Demos

8. Q and A

Rendering Overview
Rendering - turning the numbers inside the computer into images on
the screen

Polygons - a set of three or more points in 3D space, defining a
surface (a triangle usually)

Using specialized matrix math, the computer “flattens” the polygons’
points onto the screen and fills space between them

This is rasterization, as opposed to ray tracing

We can influence this process to create interesting effects

For a long time, most research went into making the images as
realistic as possible

Non-Photorealistic Rendering

Now, Non-Photorealistic Rendering (NPR) is getting more attention

NPR presents more and different information than photorealistic
rendering

Artistic styles

Data representation

A few game examples...

TechnicalQuake/NPRQuake

Legend of Zelda: Wind Waker

MadWorld

Okami

XIII

Others

Edge Uses
1. Differentiate multiple objects

2. Differentiate sections of objects

3. Highlighting individual objects

4. Enhance structural perception

Easier to figure out the object’s 3D shape

5. Achieve specific graphical style

Watercolor, toon, etc.

6. Anti-Aliasing

Preventing “jaggies”

Edge Types
Contour - Polygon edge separating a front-facing polygon from a
back-facing one

Crease - Polygon edges where the adjacent polygons’ normals are
greater than a user-defined angle from each other

Boundary - Polygon edges connected to only one polygon

Intersection - Non-polygonal edge collision of two polygons

Marked - Polygon edges that are marked to always be drawn

Drawable - Polygon edges that will be drawn on a given frame, as
opposed to all polygon edges

Edge Types

Overview of Edge Detection Methods

Hardware Methods

Image-space Method

Object-space Methods

Miscellaneous Methods

Hardware Methods

Renders edges as a bi-product of the order and method of rendering,
not a specific detection step

Pros

Very fast

Simple to implement

Supported on older devices

Cons

Usually only renders contour edges

Lacks customizability

Hardware Method Example
1. Render front-facing polygons

2. Render back-facing polygons in wireframe mode with thickened
edges

Generates edges along the contours

Image-space Method

Uses image filters to detect areas of rapid change (edges) in data
representations of the scene

Pros

Naturally detects intersection edges

Constant speed regardless of scene complexity

Cons

Edge thickness unpredictable

Lacks customizability

Image-space Method Example

Object-space Methods

Detects edges in 3D space by checking individual polygon edges

Pros

Very accurate

Easily controlled and customized

Cons

Relatively slow

Usually requires preprocessing

Object-space Method Detail
Every frame, check all unique polygon edges for drawability

Drawable edges are given their own polygons and rendered like any
other object

Customization

Edge thickness

Edge color

Edge geometry

Textured edges

Dozens of variations on the basic premise exist, mostly dealing with
optimizations

Object-space Method Examples

Miscellaneous Methods
Render black where the normal is nearly perpendicular to the view

Render black a scaled copy of the mesh with inverted normals and
back-face culling turned on

etc.

Research Inspiration

While studying NPR techniques for my thesis, I discovered a 2004
paper by Morgan McGuire and John F. Hughes

Object-space edge detection on the graphics card (GPU) via shaders

30 times slower than rendering the object normally

Uses 9 times more data per object

But, 15 to 30 times faster than doing the same thing on the CPU

McGuire and Hughes’ Method Detail
Preprocessing (before rendering the first time)

1. Find all unique polygon edges in an object

2. Obtain the edge data: v0, v1, v2, v3, n0, n1, and i

3. Duplicate the edge data 3 times (4 total)

4. Make sure i is unique (0, 1, 2, 3)

5. Store data on GPU

McGuire and Hughes’ Method Detail

Render time (each frame)

Determine if the edge is drawable

Contour: [dot(nA, (eye - v0)) * dot(nB, (eye - v0)) < 0]

Crease: [dot(nA, nB) < -cos(θ)]

Marked/Boundary: [v3 == v0]

(nA and nB are the face normals of the two polygons)

(θ is a user-defined angle)

(eye is the position of the camera)

McGuire and Hughes’ Method Detail
Render time (each frame)

For drawable edges, depending on the i value, output one of four
points that make up a screen-aligned edge quad

Non-drawable edges output degenerate quad points

McGuire and Hughes’ Method Variations
Half-quads for contours

Prevents some artifacts, but complicates the implementation

Rasterized lines (thin lines) instead of quads

Faster and cheaper, but no customization

McGuire and Hughes’ Method Capping
Gaps are formed between thick edges

Fill them with two caps, each covering half of the gap

McGuire and Hughes’ Method Capping
Gaps are formed between thick edges

Fill them with two caps, each covering half of the gap

McGuire and Hughes’ Method Capping
Gaps are formed between thick edges

Fill them with two caps, each covering half of the gap

McGuire and Hughes’ Method Capping
Gaps are formed between thick edges

Fill them with two caps, each covering half of the gap

McGuire and Hughes’ Method Steps

The whole process involves four rendering passes per frame

1. Render mesh with depth offset

2. Render thick edges

3. Render edge caps for left vertex

4. Render edge caps for right vertex

Issues

Screen-space thickened edges can overpower the mesh

Normals may not represent curvature of the surface creating bad
caps (the “bad normal” problem)

High memory usage and computation duplication

McGuire and Hughes suggested the use of geometry shaders and
data textures

Research

Thesis Goal: alleviate the issues and explore alternative solutions

Aspects researched were:

Depth-based edge thickness

“Bad normal” solutions

Reduce render passes with alternate edge types

Attempt to use OpenCL to make the whole process better

Fewer computations

More accurate caps

Screen-space Edge Thickness Issue
Hurts depth perception

Edges can overpower distant objects

Depth-based Edge Thickness
Depth perception is maintained

Edges don’t overpower distant objects

Adding a minimum prevents loss of distant edges

“Bad Normal” Problem
Case I: three or more drawable edges converge

More than one normal is correct

Edge redundancy usually prevents full failure

“Bad Normal” Problem
Case II: curved area abuts a flat area

Only one normal is correct

It is difficult to find

Solving the “Bad Normal” Problem 1
Allow for duplicate edges

Export models with edges already split over the user-defined angle

Solving the “Bad Normal” Problem 2

• Pick better normals for the edges during the mesh creation process

• This is a manual solution

Solving the “Bad Normal” Problem 3
Use an alternate form of capping not based on normals

More later...

Alternate Edge Types

Concept: Combine caps into the edge rendering to reduce passes

Half Hex Method

House Method

Plug Method

Double caps to handle bad normals

Demo

OpenCL

Version 1.0 of OpenCL (Open Compute Library) was released in 2009

Allows massively parallel computation on GPUs and other devices

Interoperable with OpenGL

OpenCL Edge Detection

OpenCL’s abilities allow another method of edge detection similar to
McGuire and Hughes’

Reduces data and calculation duplication

Higher accuracy caps

How It Works: Edges

Vertex data is already on the GPU

Only need to store connectivity information

A vertex list on the GPU representing edges, not polygons

Edge detection and edge vertex generation are both nearly identical
to McGuire and Hughes’ method

The output vertices must be temporarily stored, OpenCL cannot
render to the screen

How It Works: Caps
The temporarily stored drawable edges define what edges need caps

Like the edges, keep a buffer of connectivity information that defines
the possible caps

Since the positions of the drawable edges are known, no normals are
necessary, removing the “bad normal” problem

Data Representation
Trivial set of connected
polygons in 2D space

V[1] V[3]

V[2]V[0]

Vertex BufferVertex Buffer

Data ID

(1.0, 1.0) V[0]

(1.0, 2.0) V[1]

(2.0, 1.0) V[2]

(2.0, 2.0) V[3]
Cap BufferCap Buffer

Data ID

E[0, 2] C[0]

E[0, 1] C[1]

E[0, 3] C[2]

E[1, 3] C[3]

E[1, 2] C[4]

E[1, 4] C[5]

E[2, 4] C[6]

E[3, 4] C[7]

Edge BufferEdge Buffer

Data ID

V[0, 1, 2, 0] E[0]

V[1, 2, 0, 3] E[1]

V[0, 2, 1, 0] E[2]

V[1, 3, 2, 1] E[3]

V[2, 3, 1, 2] E[4]

Offset

ReferenceOutput

Edge Out BufferEdge Out Buffer

Data ID

[VERTICES] O[0]

[VERTICES] O[1]

[VERTICES] O[2]

[VERTICES] O[3]

[VERTICES] O[4]

Cap Out BufferCap Out Buffer

Data ID

[VERTICES] O2[0]

[VERTICES] O2[1]

[VERTICES] O2[2]

[VERTICES] O2[3]

[VERTICES] O2[4]

[VERTICES] O2[5]

[VERTICES] O2[6]

[VERTICES] O2[7]

Output

OpenCL Method Steps

Compute Passes

1. Create Edges

2. Create Caps

Render Passes

3. Draw Object

4. Draw Edges (simple)

5. Draw Caps (simple)

Problems

OpenCL implementation was slow

Several potential causes were found

Using non-vector memory loads/stores

Memory access speeds are not equivalent

GPU operations occur in lock-step

Output must be stored temporarily before rendering

...and possibly several others

Addressing Issues

Optimized kernel with vector memory operations

Implemented both methods on the CPU, where memory speeds are
equivalent and short-circuiting is possible

Implemented McGuire and Hughes’ capping method in OpenCL

Experimented with other methods as well

Results Analysis

How many operations are performed?

How much memory is used?

How much geometry is drawn?

How fast are they?

Arithmetic Operations
CL - Edge (Worst)

GLSL - Edge (Worst)

CL - Cap (Worst)

GLSL - Cap (Worst)

CL - Edge (Best)

GLSL - Edge (Best)

CL - Cap (Best)

GLSL - Cap (Best)

0 75 150 225 300

Add/Sub Multiply Division Square Root Smaller is better

Logical/Other Operations

Smaller is better

CL - Edge (Worst)

GLSL - Edge (Worst)

CL - Cap (Worst)

GLSL - Cap (Worst)

CL - Edge (Best)

GLSL - Edge (Best)

CL - Cap (Best)

GLSL - Cap (Best)

0 12.5 25 37.5 50

Logic Forks Comparisons Typecasts

Processing Ratios
Edge CL:GLSL Ratio

Worst Case
Cap CL:GLSL Ratio

Worst Case
Edge CL:GLSL Ratio

Best Case
Cap CL:GLSL Ratio

Best Case

Add/Sub

Multiply

Division

Square Root

Logic Forks

Comparisons

Typecasts

0.238 0.255 0.272 0.030

0.298 0.285 0.258 0.033

0.25 0.375 0 0

0.25 0.333 0.25 0

0.194 0.25 0.25 0.083

0.205 0.424 0.25 0.429

0.75 0.75 N/A N/A

Smaller is better
Note that though specific values will change from implementation to implementation, the ratios remain approximately the same

GPU Memory Usage

Memory Usage Per Item

CL Edge

GLSL Edge

CL Cap

GLSL Cap

640

2688

576

96

Values are in bits
Assumes 32 bit floats/integers
GLSL caps are small due to reuse of data in GLSL edges
GLSL quantities do not include the transparent memory used within the pipeline
Smaller is better

Edge and Cap Quantities
Edges (CL/GLSL) Caps (CL) Caps (GLSL) Cap:Edge Ratio (CL) Cap:Edge Ratio (GLSL)

Normal Cube

Simple Cube

Cylinder

Merged Cylinder

Cone

Quad Sphere

Ico Sphere

Teapot

Monkey

Bunny

24 24 48 1 2

12 24 24 2 2

96 320 192 3.33 2

96 192 192 2 2

64 592 128 9.25 2

2016 6944 4032 3.44 2

1920 9570 3840 4.98 2

1180 4420 2360 3.75 2

1449 7188 2898 4.96 2

20812 107290 41624 5.16 2

Edge and Cap Memory Usage
Total CL Memory Total GLSL Memory Memory Ratio (CL : GLSL)

Cube 29184 69120 0.422

Merged Cube 21504 34560 0.622

Cylinder 245760 276480 0.888

Merged Cylinder 172032 276480 0.622

Cone 381952 184320 2.07

Quad Sphere 5289984 5806080 0.911

Ico Sphere 6741120 5529600 1.21

Teapot 3301120 3398400 0.971

Monkey 5067648 4173120 1.21

Bunny 75118720 59938560 1.25

McGuire and Hughes’ caps in OpenCL
Total CL Memory Total GLSL Memory Memory Ratio (CL : GLSL)

Cube 39936 69120 0.577

Merged Cube 19968 34560 0.577

Cylinder 159744 276480 0.577

Merged Cylinder 159744 276480 0.577

Cone 106496 184320 0.577

Quad Sphere 3354624 5806080 0.577

Ico Sphere 3194880 5529600 0.577

Teapot 1963520 3398400 0.577

Monkey 2411136 4173120 0.577

Bunny 34631168 59938560 0.577

McGuire and Hughes’ caps, implemented in OpenCL, save a lot of memory over the shader version
Values in bits, assumes 32 bit floats/integers
Smaller is better

Drawable Geometry
Edges (CL & GLSL) Caps (CL) Caps (GLSL) Cap:Edge Ratio (CL) Cap:Edge Ratio (GLSL)

Cube

Merged Cube

Cylinder

Merged Cylinder

Cone

Quad Sphere

Ico Sphere

Teapot

Monkey

Bunny

24 24 48 1 2

12 24 24 2 2

130 136 260 1.04 2

66 72 132 1.09 2

34 37 68 1.09 2

72 72 144 1 2

55 55 110 1 2

205 228 410 1.11 2

345 488 690 1.41 2

1175 1397 2350 1.19 2

The number of drawable edges and caps is usually view dependent
These numbers assume the camera is pointing at the origin while positioned at (3, 3, 3)
The models are at the origin, and generally are of dimension 1

Smaller is better

Speed: CPU
Framerate (CL) Framerate (GLSL) Ratio (CL:GLSL)

Cube 1135 1156 0.982

Merged Cube 1155 1180 0.979

Cylinder 1139 1182 0.964

Merged Cylinder 1126 1128 0.998

Cone 1276 1338 0.954

Quad Sphere 679 144 4.715

Ico Sphere 631 155 4.071

Teapot 906 226 4.009

Monkey 602 176 3.42

Bunny 54 14 3.857

Bigger is better

Speed: GPU
Framerate (CL) Framerate (GLSL) Ratio (CL:GLSL)

Cube 760 1173 0.647

Merged Cube 768 1184 0.648

Cylinder 733 1103 0.664

Merged Cylinder 741 1142 0.648

Cone 724 1244 0.581

Quad Sphere 416 713 0.583

Ico Sphere 360 739 0.487

Teapot 464 850 0.545

Monkey 334 770 0.433

Bunny 31 134 0.231

Bigger is better

Speed: Original Caps in OpenCL

Bigger is better

Framerate (CL) Framerate (GLSL) Ratio (CL:GLSL)

Cube 762 1173 0.649

Merged Cube 770 1184 0.65

Cylinder 735 1103 0.666

Merged Cylinder 749 1142 0.655

Cone 670 1244 0.538

Quad Sphere 584 713 0.819

Ico Sphere 593 739 0.802

Teapot 631 850 0.742

Monkey 634 770 0.823

Bunny 159 134 1.18

Conclusion

OpenCL has some potential for complex objects in terms of speed,
but it’s not quite there yet

Higher accuracy caps are the only real advantage to the OpenCL
implementation at this time

The other concepts (depth-based thickening, methods of reducing
bad normals, and alternate edge methods) work now in shaders

Demo

Future

Implementing McGuire and Hughes’ method with the duplicate data
would allow for memory caching and probably faster speeds

OpenCL capping method could be implemented with a geometry
shader/data texture setup

Microsoft’s DirectCompute can render to the screen, unlike OpenCL

Chris Peters suggested another capping method that could lead to
equal quality caps without checking every possible combination of
edges

OpenCL’s implementation will inevitably become faster over time

Questions?

